

Research Areas

Mathematical modeling in nanotechnology

Assoc. Prof. Duangkamon Baowan

- Works focused on the energy and force distribution between both organic and inorganic molecules
- To understand the energy behaviors at a molecular level

Mathematical modeling of interaction energies between nanoscale objects

Mathematical modeling and simulation in medical science and agriculture

Assoc. Prof. Chontita Ratanakul

- Signal transduction
 process
- Biological controls of insect pests of Thailand's economic crops

Signal transduction process 1

- Signal transduction process in living cells and osteoporosis
- Theoretical and numerical approaches

$$\begin{split} I_{t+\Delta t} - I_t &= \alpha (BH_{t+\Delta t} - BH_t) + \beta (B1_{t+\Delta t} - B1_t) + \gamma (B2_{t+\Delta t} - B2_t) - \frac{K_F K_{dF} I_t}{K_{dF} + I_t} \\ &- \frac{K_B K_{dB} I_t}{K_{dB} + I_t} - \varepsilon ((I_t - I_e) - s(E_t + E_e)) + \delta_0 \\ E_{t+\Delta t} - E_t &= \varepsilon (I_t - s(E_t + E_e)) - \omega E_t + \lambda X_t \\ X_{t+\Delta t} - X_t &= \eta_m [H(E_{t+\Delta t} + E_e - E_m) - H(E_{t+\Delta t} + E_e - E_m)] \frac{e^{-\mu (E_{t+\Delta t} + E_e - E_m)} - 1}{e^{-\mu (E_{t+\Delta t} - E_m)} - 1} \\ &+ \eta_M [1 - H(E_{t+\Delta t} + E_e - E_M)] + \eta_m H(E_{t+\Delta t} + E_e - E_M)] - \eta_0 X_t \end{split}$$

Signal transduction process 2

Figure 5 Simulated time courses of the numbers of (a) free healthy receptors, (b) type 1 free defective

Biological controls of insect pests 1

- Biological controls of insect pests of Thailand's economic crops
- System of difference, differential equations, Cellular Automata model and Monte Carlo simulation

$$P_{t+\Delta t}^{i} = P_{t}^{i} + \eta \alpha_{1} P_{t}^{e} - \alpha_{2} P_{t}^{i} - \beta_{1} \left(P_{t}^{i}, M_{t}^{i} \right) M_{t}^{i}$$

$$\tag{1}$$

$$P_{t+\Delta t}^{m} = P_{t}^{m} + r_{2}\alpha_{2}P_{t}^{i} - \alpha_{3}P_{t}^{m} - \beta_{2}\left(P_{t}^{m}, M_{t}^{i}\right)M_{t}^{i}$$

$$\tag{2}$$

$$P_{t+\Delta t}^{e} = P_{t}^{e} + r_{3}\alpha_{4}v_{1}P_{t}^{m} - \alpha_{1}P_{t}^{e} - \beta_{3}\left(P_{t}^{e}, M_{t}^{i}\right)M_{t}^{i}$$
(3)

$$M_{t+\Delta t}^{i} = M_{t}^{i} + s_{1}\gamma_{1}M_{t}^{e} - \gamma_{2}M_{t}^{i}$$

$$\tag{4}$$

$$M_{t+\Delta t}^{d} = M_{t}^{d} + s_{2}\gamma_{2}\delta_{1}\left(P_{t}^{i}, P_{t}^{m}, P_{t}^{e}, M_{t}^{i}\right)M_{t}^{i} - \gamma_{3}M_{t}^{d}$$

$$\tag{5}$$

$$M_{t+\Delta t}^{m} = M_{t}^{m} + s_{3}\gamma_{3}M_{t}^{d} - \delta_{2}M_{t}^{m}$$

$$\tag{6}$$

$$M_{t+\Delta t}^{e} = M_{t}^{e} + s_{4} v_{2} M_{t}^{m} - \gamma_{1} M_{t}^{e}$$
⁽⁷⁾

Biological controls of insect pests 2

Biological controls of insect pests 3

Mathematical modeling of infectious diseases

Asst. Prof. Farida Chamchod

- Dynamics of malaria, antibiotic-resistant bacteria, influenza, and livestock diseases
- Vaccination, host movements, seasonality, and population dynamics

A modeling approach to investigate epizootic outbreaks and enzootic maintenance of rift valley fever virus

$$\begin{aligned} \frac{dU}{dt} &= (1 - \lambda_A - \lambda_C - \lambda_I)\Lambda - (\epsilon\beta_A A + \epsilon\beta_C C + \sigma\beta_I I)U - \gamma_U U \\ \frac{dA}{dt} &= \lambda_A \Lambda + p(\epsilon\beta_A A + \epsilon\beta_C C + \sigma\beta_I I)U - \gamma_A A \\ \frac{dC}{dt} &= \lambda_C \Lambda + (1 - p)(\epsilon\beta_A A + \epsilon\beta_C C + \sigma\beta_I I)U + (1 - r)\nu I - \gamma_C C \\ \frac{dI}{dt} &= \lambda_I \Lambda + q\gamma_C C - \nu I \end{aligned}$$

Mathematical models in biology

Asst. Prof. Kornkanok Bunwong

- Ecology, Environment and Evolution
- Dynamical systems

A bifurcation path to chaos in a time-delay fisheries predator–prey model with prey consumption by immature and mature predators

(a) Time series of the solution.

(b) Phase plane plot.

Mathematical modeling of complex systems

Asst. Prof. Pairote Satiracoo

- Develop mathematical models in glucose absorption process.
- Qualitative analyses of nonlinear systems are main tools.

Computational Mathematics

Asst. Prof. Somkid Amornsamankul Blood Flow Simulation

Computational fluid dynamics

Asst. Prof. Wannika Sawangthong

Dr. Nathnarong Khajohnsaksumeth

- Numerical simulation of three-dimension fluid flow in cemented hip replacement
- Numerical simulation of three-dimension fluid flow in coronary artery

Numerical simulation for efficient static mixers with different geometries

High performance computing

Asst. Prof. Pallop Huabsomboon

- · Firespread model
- Thrombus formation process at medical devices in blood flows
- Efficient numerical techniques for solving integral equations

Oil spill prediction

WAM model

Dr. Kittisak Chanyatrakom

The simulation of the movement of three oil slicks from the different drilling rigs on 4 January 2019, the storm cyclone (Pabuk) day.

Coding theory

Asst. Prof. Wittawat Kositwattanarerk

- The study of how information can be transmitted efficiently and reliably
- Low-density parity- check (LDPC) codes

Applied functional analysis in modeling in Physics, distribution theory

- Mathematical modeling of fiber reinforced structures by homogenization
- Mathematical modeling of a thin plate by reduction of dimension process

Operations Research

Dr. Rawee Suwandechochai

Dr. Wasakorn Laesanklang

Dr. Wasin Padungwech

Route optimization for large-scale real-world problems

- · vehicle routing optimization with multiple constraints
- exact methods and heuristic methods

Efficient algorithms for computationally expensive black-box optimization problems

Dr. Tipaluck Krityakierne

- response surface models
- Gaussian Process (GP) models for large-scale problems

Iteration: 35

Graph Theory

Dr. Chanun Lewchalermvong

Graph theory to problems
 in traffic control

Rings and modules

Dr. Nguyen Van Sanh

Approximation theory, potential theory

Asst. Prof. Nattapong Bosuwan

- Polynomial and Rational Interpolation and Approximation
- Padé Approximants
- Orthogonal Polynomials
- Minimal Energy and Riesz
 Polarization Problems

Differential geometry, computational mathematics, group theory and theory of formal languages

Dr. Dmitry Berdinsky

- Surface theory in Thurston geometries
- Isogeometric analysis
- Cayley automatic groups